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The magnetic susceptibility of an ion fluctuating 
between two magnetic valence states 

S M M Evans and G A Gehring 
Department of Theoretical Physics, Oxford University, Oxford OX1 3NP, UK 

Received 3 October 1988, in final form 9 January 1989 

Abstract. Using a variational technique, we consider the magnetic susceptibility, ,y, of a 
magnetic impurity with lowest ionic configurationsf' andf* (for minimal orbital degeneracy 
and j-j coupling) embedded in a free-electron continuum. 

For the simplest variational wavefunctions (no electron-hole excitations) we find that 
the susceptibility in thef' limit is anomalously large compared to t h e y  limit and is enhanced 
throughout the mixed valence regime. 1/,y is strongly correlated to the binding energy of the 
singlet relative to the magnetic states. 

The inclusion of the first excited state of the Fermi sea gives rise to a large effect and the 
susceptibility is enhanced considerably in thef limit. The results in the two Kondo limits 
can be expressed in a renormalised form and are seen to correspond to exact results for Ce. 
Examination of higher-order terms makes us believe that these do not alter the results in 
any qualitative way. The charge susceptibility can be calculated and is seen to be small 
throughout the mixed valent regime. We consider also the dynamical susceptibility, ,y(w), 
and compare this with experimental results. The extension of the above results to actinide 
impurities, which fluctuate betweenf andf3, and the relevance to uranium heavy fermion 
compounds is discussed. 

1. Introduction 

The theory of mixed valence systems, and in particular their relevance to heavy fermion 
materials, continues to present many theoretical problems. Materials exhibiting mixed 
valence fall into two distinct categories. The rare earths (RE) Ce and Yb are examples 
of the first category where we have an ion fluctuating between a non-magnetic state,fO, 
and a magnetic state,fl. For a single impurity, this problem has been solved exactly, at 
least for thermodynamic properties (Schlottman 1983a, b, Ogievetski et a1 1983). The 
ground state is seen to be a singlet, characterised by a small binding energy which defines 
an energy scale, TK. Approximate solutions may also be found by taking an expansion 
in 1/N, where N ,  the degeneracy of thef '  state, is large ( N  = 6 or 8) (Gunnarsson and 
Schonhammer 1983a, b, Rasul and Hewson 1983,1984, Read 1985). Accurate results 
may be obtained by keeping only the first two terms in such an expansion (Rasul and 
Hewson 1984). We note in particular that good results are obtained even for N as low as 
2. The 1/N technique may be extended to a lattice of RE ions (Rasul and Degranges 
1986, Millis and Lee 1987). 

The second category, in which both valence states have magnetic moments, presents 
a much more difficult problem. Examples of materials in this category are Tm (RE ion 
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with valence statesf' andf2),  and U (actinide ion with valence statesf2 andf3). There 
is no exact solution. Using a variational technique Yafet et a1 (1985, which we shall 
denote by I) and Nunes et a1 (1985), have shown that for a single ion the ground state is 
again a singlet which now has a small energy scale for all values offoccupation, nf. We 
can also extend the arguments of Cragg and Lloyd (1979) to show that the electron gas 
has sufficient channels to compensate the magnetic moment. The small energy scale 
implies an enhanced susceptibility and specific heat even in a mixed valent regime. This 
would provide an explanation for the experimental results that certain U systems show 
the existence of heavy fermion behaviour even with nf = 2.5 (Frick eta1 1984,1985) and 
TmSe which has nf = 1.5 becomes magnetic at T = 3 K (Batlogg et a1 1979). It has, 
however, been suggested (Yafet and Varma 1984) that the existence of a small matrix 
element between the variational singlet and triplet states tends to offset the effect of the 
small energy denominator leading to a susceptibility which is not appreciably enhanced. 
It is no longer clear how useful approximation techniques will be, as the expansion 
parameter is now 1/R where R ,  the ratio of the degeneracies of thef" andf"+'  states, is 
less than 2 (though in analogy with Ce this may not matter too much). We note that 
results differ according to the method of solution used. The zeroth-order results from a 
functional integral calculation (Rasul and Harrington 1987, Read 1986) give an energy 
scale which is linear with nf in both Kondo limits. Analogous results from a variational 
technique (Read et a1 1986), however, establish rather different energy scales near the 
f '  andf2 limits. In thef2 limit the energy scale is again linear in nfbut thef' limit contains 
an exponential in 1/(1 - nf). This marked asymmetry in the two Kondo limits is difficult 
to understand. It would suggest that if we consider nf = m + q where m is an integer and 
+ 0 the form of the result depends on the sign of q .  In I a calculation involving all 

higher-order terms is performed, however they consider only one point in the middle of 
the valence regime which leads to the mistaken conclusion that the effect of the higher- 
order states is to enhance the energy separation between the singlet ground state and 
higher-energy magnetic states. 

In this paper we use an extension of the methods used in I to calculate the magnetic 
susceptibility of a Tm ion as a function o f f  occupation. We consider first of all the 
simplest variational wavefunctions, i.e., those with no electron-hole excitations of the 
Fermi sea (this is just the zeroth-order term in a 1/R expansion). We consider an f 
level with only two orbitals (ml = 0, l), since this has the advantage of avoiding the 
complication of angular momentum recoupling. j-j coupling in the limit of zero j-j 
coupling is also considered for this reason. 

The calculation of the susceptibility shows that it is closely correlated to l/(ws - U,,) 

and thus reflects the asymmetry found by Read et a1 (1986). We have also calculated a 
Van Vleck-type term arising from the mixing of the lowest-energy singlet and triplet 
states. This term is seen to vanish in the f '  Kondo limit indicating that it cannot be the 
major contribution to x. 

In § 3 we consider the effect of including the first electron-hole excitation (this gives 
terms -l/R). This leads to a large enhancement in thef2 limit removing the asymmetry. 
xis also enhanced by approximately 30% in the middle of the valence regime. The effect 
of higher-order terms is discussed. 

So far our equations have depended on the band cut-off D. Following Read et a1 
(1986) we use scaling theory to renormalise our equations to remove D. Our results may 
then be compared with exact results forf', f '  and are seen to correspond. 

The charge susceptibility can be calculated. It is seen to be small for all nf. The result 
can be used to evaluate the Wilson ratio. 
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We consider also the real and imaginary parts of the dynamical susceptibility, ~ ( w ) ,  
and show that this has a two peak structure in contrast to that for Ce, which has one peak 
only. This feature is a direct consequence of the fact that bothvalence states aremagnetic. 
We compare our results with experiment. Finally, we discuss the extension of the above 
results to uranium systems. 

The details of our model are as follows. The Hamiltonian we use is 

H O  = Hband + Hf + Hmix (1.1) 
where for minimal degeneracy the f', f 2  configurations hybridise with the conduction 
electrons in one of two partial wave states via an interaction term 

where ckmro destroys bandelectronsin themlth channelwith spin U .  f m i o  denoteslocalised 
electrons. The bare energies of thef1,f2 states are El  and E,, respectively. We assume 
that Vand the density of states po are constant. Using the variational procedure followed 
in I, wavefunctions are written down for states of different symmetry with the minimum 
possible number of electron-hole pairs. Let ivo) be the ground state of the Fermi sea. 
The doublet state has wave-function 

1 
I v D )  t = a D f l  t IVO) + T 5 PD(k)  [(f: t f l J  + fl J f;? )ckl I + 2f: t f8r c k l  t IlVO). 

(1.3) 

(1.4) 

We consider the variational equations 

6 V [ ( v D l H O l v D )  - (EFS + El - u D > ( v D I q D ) l  

where EFS is the energy of the full Fermi sea. The binding energy of the impurity to the 
Fermi sea is uD if 6 3 0 and wD + 6 if 6 < 0. uD is given by 

A state of triplet symmetry may also be formed. The wavefunction is 
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with oT given by 

Equations (1.7) and (1.9) do not have analytic solutions except in the two Kondo limits. 
They may however be solved numerically throughout the mixed valence regime. As 
shown in I, the singlet state has the lowest energy. The energy separation between the 
singlet and the magnetic states is small (at most 10% of F). 

2. Lowest-order calculation of the magnetic susceptibility 

The susceptibility can be calculated by allowing the coefficients, as and ps to be spin- 
dependent and adding a perturbation H I  = hpu, to (1. l ) ,  where h is the applied magnetic 
field and p2 is given by 

We have assumed that the field couples only to the spin of thefand c electrons. 
The resulting eigenvalue equations are 

a r ( k ) ( E k  

a T (4  + a t ( k ’ )  1 a T ( k )  + J ( k ’ )  -} dEk, 
(2.2) - + -  

= “ lod { 6  + ws + &k f & k ’  f 2h 2 6 f os + & k  f &k’ 

a J ( k ) ( & k  

and /3uu8 is given by 

/3uo,(k, k ’ ) [ 6  + 0 s  + &k 4- &k’ + 2h(o + O’)] = - V $ V [ a , ( k )  + c ~ , , ( k ’ ) ]  (2.4) 

where h = bhgpB, g = gf - g,. As they stand these coupled equations are relatively 
difficult to solve. A simpler way to calculate the susceptibility is as follows. We rewrite 
the field-dependent wavefunction explicitly as a perturbation series in h: 

IqS(h)) = / V S ( O ) )  + h18qT) + h2/sVS)  (2.5) 
where /SoT) is a state of triplet symmetry of the same form as (1.8) with aT(k) ,  &(k, k ’ )  
and yT(k,  k ’ )  replaced by A - ( k ) ,  B-(k,  k ’ )  and C-(k ,  k ’ )  respectively, where 



The susceptibility of mixed valent Tm and U ions 3099 

A-(k )  and B - ( k ,  k ’ )  may be found either from equations (2.2)-(2.4) or by considering 
the Overlaps ((f:T C k ’ O f  + f t . 1  c k ’ O J  I H O  + H l l q S ( h ) )  and (f!rf ir  C k ’ O t  C k l t  + 
f l J f i J  c k ’ O J  C k l J  l H O  + H l l q S ( h ) ) .  

Both methods give the same equation for A-(k). Noting that to lowest order in h we 
may replace A + ( k )  by as(/?) and ws(k)  by its zero-field value we have 

B - ( w s  + 6 f & k  + E k , )  = -2Bs(k, k ’ )  - VZv[A-(k)  f A - ( k ’ ) ] .  (2.10) 

This is an integral equation for A - ( k )  which depends only on as(k) and ws(0), which we 
already know how to calculate. An extension of the numerical method which solves (1.7) 
may be used to find A - ( k )  and hence E2. E2 may be calculated throughout the valence 
regime and is seen to give an enhanced susceptibility x (x = -2g2p$ E2) .  We can also 
find x exactly in the two Kondo limits. As n f 4  1, 

O S  - WD = D exp(-6/f) 

x = (g2c1i/4>(0S - ,D>-l = (g2pi/4D) exd61f) 

(2.11) 

(2.12) 

and 

and as nf + 2, 

U S  - OJD = 2 0  exp( - ISI/l?) (2.13) 

and 

x = (4g2p?3/3) - = (2g2pg/3D) exp(lbl/f) (2.14) 

nf can be calculated as a function of 6 by using the Hellman-Feynman expression 
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- /*I\ 

/ \ 

nf = 1 - (dws/d6). (2.15) 

The results for the two local moment regimes differ sharply. For nf+ 1, 

nf - 1 = I?D/S2 (2.16) 

while for nf-$ 2, 

2 - nf = (2D/I?) exp(-)6/ / t ) .  (2.17) 

The behaviour of x is thus seen to be quite different in the two limits. 

x = (g2pi /40)  exp[D/F(nf - l)]''' (2.18) 

in the f 1  limit and 

x = (2g2p$/3r) (2 - nf)-l  (2.19) 

in t h e y  limit. To compare x with l / ( w s  - wD) we need to consider a form of x in which 
we have removed the effective magnetic moment. We look at x = nfpzffx, where 
p2ff = $g2piS(S + 1) and we take S = nf/2. Clearly this has the required form in the two 
Kondo limits. In figure 1 we plot ws - wD and l/g as a function of nf. There is a close 
correlation between the two. The result shows the marked asymmetry commented on 
earlier. 

We can also try to calculate the susceptibility approximately by considering a Van 
Vleck-type term of the form 

(2.20) 

where 1 &) and I&) are the normalised wavefunctions (1.6) and (1.8). 
Equation (2.20) may be evaluated exactly in the two local moment regimes and 

numerically in the intermediate region. For -6 9 D 9 r, i.e., nf+ 2, we find that the 
susceptibility diverges as exp(lbl/f). This is the expected form. In the middle of the 
valence regime (nf = 1.5) the matrix element ($slpz/$T) is approximately 0. 3gpB leading 
to a susceptibility, x = 2g2pg / f ,  which does not reflect the smallness of os - wD. In the 
opposite Kondo limit 6 9 D 9 r (nf+ l), x is vanishingly small, x - exp - 6/r, which 
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seems unlikely as is confirmed by the above calculation. It thus appears that the major 
contribution to x does not arise from a term of the form (2.20) and that the triplet state 
determined by a variational calculational has little significance as far as the susceptibility 
is concerned. 

3. Inclusion of electron-hole excitations 

So far our calculations have not included any electron-hole excitations. Since the energy 
of these excitations is arbitrarily small such an approximation cannot be justified. As 
shown in I ,  including excited states introduces terms that are of higher order in 1/R so a 
perturbation series is obtained. However, for the case of minimal orbital degeneracy 
1/R = 4 so we do not get a genuine expansion. In this section we look in some detail at 
what happens when we include the first electron-hole pair. We consider again the 
doublet, singlet and triplet states. 

(i) Doublet. Thef2terminequation (1.3),fl,flU,ckl8, isconnectedbyHmi,toexcited 
states f ] o c ~ ~ o o ~  C k l 8  and c~lof lo t  C k l & ,  where q l aand  q'Oa' are unoccupied electron states. 
These terms differ from the f 1  terms in equation (1.3) in having an electron-hole pair. 
They can be included by simply adding terms to the wavefunction in whichfi, is replaced 
by c&, etc. This gives 

where iVD)\ is the zero-order state of equation (1.3). This leads to the equation for wD 

d e k  
D 

#D = r lo 
O D  + + &k -k gse(&k) 

where d,,(&k) is a self-energy term given by 

D' is the width of the unoccupied part of the band which we shall take as equal to D from 
now on. 

(ii) Singlet and triplet. To calculate their binding energies in the same approximation, 
terms similar to those of (3.1) are added to the variational functions (1.6) and (1.8). We 
replace, for example,flt f i r  by cil f i r  andf:? c $ ~ ~  with coefficients qs(q, k ,  k ' )  and 
qs(q', k ,  k ' )  and sum over q ,  q ' ,  k ,  k' .  The following eigenvalue equation is obtained 
for the singlet 

where the self-energy term is 
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t 

Figure 2. A plot of the energy scale (full curve) and l/x (broken curve) against nfincluding 
the first self-energy term. 

The eigenvalue equation for the triplet is the same, except that just as in equation (1.9) 
the term in a,(k') acquires a coefficient Q. 

The magnetic susceptibility is calculated as before by allowing the coefficients 
q(q ,  k ,  k ' )  to be spin-dependent leading to the following equation for E2 

2 2 k A - ( k ) a s ( k )  -t $ Z k k ,  B - ( k , k ' ) P , ( k , k ' )  + $ E C q , k , k '  D - ( q ,  k ,  k ' )qs(q ,k ,  k ' )  
(I js(0)l IjS(0)) 

E2 = 

(3.6) 
where 

The equations for A-(k), B - ( k ,  k ' ) ,  D-(q ,  k ,  k')  are 

(3.10) 

This produces a large effect as can be seen from figure 2, where we have again plotted 
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ws - wD and 1/11 as a function of nf. The energy scale is greatly reduced in thef2 limit, 
removing the asymmetry. It is also substantially lowered in the middle of the valence 
regime. The difference between ws - wD and l/f is also lessened. In thefl Kondo limit 
we again get the result (2.18), while for thef2 limit we now obtain 

(3.11) 

The change in the behaviour of x in thef2 limit is analogous to the change in x in thef’ 
limit for Ce-type impurities when the first excited state is included (Rasul and Hewson 
1984). 

We note that in I a calculation was performed for one set of parameter values, with 
6 = 0 only. They show that introducing excited states increases the energy separation, 
which appears to contradict the results found above for the following reason. For the 
zeroth-order result, 6 = 0 corresponds to a point in figure 1 which is well to the left of 
the maximum. When we include the first excited state, however, 6 = 0 is very close to 
the maximum value. Therefore the energy scale at this particular value of 6 increases 
while the energy scale as a whole decreases. 

If we try to include the next excited state exactly we encounter difficulties. The 
coefficients of the higher-order terms cannot be eliminated algebraically to give a simple 
eigenvalue equation for as. We therefore follow the procedure used in I and by Inagaki 
(1979) and retain only the dominant logarithmic contributions to the self-energies (this 
is equivalent to keeping only ‘non-crossing’ diagrams). This leads to the following 
eigenvalue equation for ws 

x = (2g2p$/3D) exp[D/Rr(2 - nf)]lI2. 

where 

(3.12) 

(3.13) 

(3.14) 

If the two Kondo limits are taken results identical to those found above for ws - wD are 
obtained. We have not attempted to solve the integral equations in the mixed valence 
region. Instead we have looked at the effect of adding only one extra term in this 
approximate way. The result is to further decrease the energy scale by a small amount. 

The coupling scheme we have used so far is not realistic although its simplicity allows 
the physics to be clearly demonstrated. In 0 4 we show that using a different coupling 
scheme produces only a small change in our results. 

4. Other coupling schemes 

We consider now the changes to our results when we look at other coupling schemes. In 
particular we look in some detail at a general j-j coupling model in the limit of zero j-j 
coupling. The band and local electrons are labelled by their magnetic quantum number 
- j  G m S + j  and mix via a term 
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The singlet state has wavefunction 

This has the same eigenvalue equation as before except that we now have f = ( N  - 1)r .  
Introducing a magnetic field gives a perturbation term H1 = hpz, where pz = 
, u ~ g ~ Z ~ m f k f ~  + P&Zkm mcimckm. We obtain a series similar to (2.5). The f’ com- 
ponent of 16qT) is a sum of N/2 terms. One of these terms is the antisymmetric com- 
bination 

2 m f k c k m  
m 

with coefficient 

(4.3) 

and all the other terms, 16q+), may be chosen to give (qs(h = O)[Hl IS@+) = 0 so the 
only terms that contribute to x are of the formZk A-(k)as(k) .  Similarly the only relevant 
term for the f 2  component is 

with coefficient 

B - ( k ,  k ’ )  = ( 2 (m + m’)Pmm,(k,  k ’ ) ) / ( h  (m + mf)2 
m<m’ m<m’ 

This gives a contribution t o x  of the form &’B-(k,  k’ )P(k ,  k f ) ,  leading to the following 
equation for E 2  

This is identical to (2.8) apart from the coefficients of the two terms which take into 
account the different spin dependence. The equations for A-(k )  and B - ( k ,  k ’ )  are also 
similar. 

Solving these in the Kondo limits as before gives equations analogous to (2.12) and 
(2.14) but with different spin dependent factors. As nf+ 1 
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ptff = (1/3N) m2 = (1/12)(N - 1)(N + 1) 
m 

(4.10) 

and as nf + 2 

,u& = [2/3N(N - l ) ]  2 ( m  + m')' = (1/6)(N+ 1) (N - 2). (4.11) 

As before we define a function of nf which extrapolates between these limits to give 2 - 2 
is less closely correlated with (ws - wD)-' than previously, differing by up to 30%. 

Next we consider adding a term containing one electron-hole pair to (4.2). The term 
we add is 

m<m' 

(4.12) 

The changes introduced are equivalent to before. The susceptibility in the two local 
moment regimes is given by (2.18) and (3.11) with yeff as above and R = 7/2. The change 
in the energy scale is less marked (it is reduced by only 7%). The result is no longer so 
symmetrical, the maximum lying closer to nf = 2 as would be expected due to the higher 
degeneracy of the f 2  state. The discrepancy between w s  - wD and l/g remains. The 
inclusion of one extra term further reduces the energy scale by a similar amount. 

For Tm the spin-orbit coupling is large and we should really use intermediate 
coupling. However, j-j coupling gives a reasonable description. This has R = 
(4j - 1)/(2j + 1) = 13/8 which lies between the two values of R we have considered so 
far. 

It is interesting to compare the two equations we have obtained for A-, which differ 
in two respects. 

(i) The coefficient of I' J [ [ a S ( k )  + as(k')]/(8 + os + &k + & k ' ) 2  d E k , .  This is given 
by ,u2fn/2,u2ffl in both cases where peffl and yeff2 are the relevant spin factors for the f '  
and f'limits, respectively. This implies acoefficientl(.l + 1)/2j(j + 1) = 4/3 (where] = 
2j - 1) for j-j coupling. 

(ii) The coefficient of A-(k ' ) .  This is just the factor which occurs in the eigenvalue 
equation for the variational triplet states. For j-j coupling this is ( j  - 2)/(j + 1) = 4 
(see I). 

It would appear that the equations for j-j coupling are close to those for minimal 
degeneracy apart from the factor R. We have calculated the energy scale including terms 
to 0(1/R) for R = 13/8 and find that the self-energy terms reduce the value of the 
maximum by approximately 25%. 

For rare earths LS coupling is appropriate. This gives a slightly smaller factor 
multiplying as (k ' )  compared to that multiplying as(/?) in the eigenvalue equations (1 -7) 
and (3.4) which reduces the energy scale. 

We have still not rigorously justified neglecting higher-order terms in the middle of 
the valence regime. As a check that this is reasonable we have performed a calculation 
using the parameters which were used in I to calculate os - wD to all orders, i.e., R = 
2, D = 200, for both j-j and spin-orbit coupling. Our results are approximately 20% too 
high in both cases so the approximation does appear to be reasonable. 

5. The dependence on D 

So far our equations have depended on the band cut-off D. To zeroth order in 1/R 
this dependence is logarithmic, suggesting that we may use scaling theory (Haldane 
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1978a, b) to renormalise (1.7) enabling all physical quantities to be expressed in terms 
of scaling invariants. This procedure has been considered by Read et a1 (1986) in the 
limits of zero and large j-j coupling. Doing this enables us to compare our results with 
exact results for Ce from the Bethe ansatz (Rasul and Hewson 1984). 

We need to look at the effect on the low-energy processes produced by states 
within dD of the band edge. We calculate the self energies for E l  and E2 due to 
hopping into the other configuration and emitting an electron or hole between D and 
D - dD. So we reduce D but compensate for this by altering 6. The energy of the f1 

state is reduced by 

2RTdDID = rdD/D (5.1) 
and the energy of the f2 state i s  reduced by 

2TdD/D = ( l /R)fdD/D 

where the factor in (5.1) comes from the matrix element connectingf’ to f2 and the 
factor of 2 in (5.2) comes from the two ways in which a transition to f’ can be made. 
The change in 6 is just the difference between the two. The expressions obtained can 
be integrated to give 

E; (D) = E,(D,) - In(Do/D) (5.3) 

E; (D) = E2(DO) - R-’r in(Do/D) (5.4) 
S(D) = S(D,) + (1 - K1)r ln(Do/D). ( 5 . 5 )  

Scaling breaks down when D is roughly equal to either IS(D)l or to r. Assuming that 
as D is reduced the first such crossover is when 6(D) = D 9 r, i.e., when D = T ” ,  
leads to 

T* = S(Do) + (1 - R-’)Fln(D,/T*) (5.6) 

with equivalent expressions for ET and E; .  We note that this expression is quite 
general and holds for all coupling schemes provided we define f and R appropriately. 
We now rewrite (1.7) in terms of T*.  First we redefine us-+ us + E,. Performing the 
first integration on the right-hand side gives a term containing In D which, when taken 
over to the left-hand side, may then be absorbed into El .  Strictly speaking, we need 
to take a large R limit in order to renormalise the right-hand side. We note however 
that the dependence on D of the simplest self-energy term is (1/R) In D,  which is 
precisely what we need to take E2+ E;,  so our procedure may be more accurate 
than it first appears. Defining Q = ws + E; gives 

This is precisely the equation obtained by Read et al (1986) although it is now more 
general. 

We now compare the results obtained using (5 .7 )  with those obtained from (1.7) 
with D = 20r .  There is no discernible difference for the vast majority of the valence 
range. A slight discrepancy is observed in thef’ limit. The reason for this is as follows. 
Both ws and U,, contain the same logarithmic dependence on D so when we take their 
difference this drops out. There is still some dependence on D since this is the upper 
limit on the integral over as(k’)/(ws + 6 + E~ + E ~ , ) ,  but since aS(k)  falls off very 
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rapidly with k this upper limit is not important. The discrepancy in the f' limit arises 
because for D = 20r we only approach n f z  1 for 6 =I 1Of so we do not have the 
condition 6 + D needed for the scaling limit. For a larger initial value of D this 
discrepancy would not arise until we are very much closer to the local moment regions. 
We note that this result again contradicts that in I where it is claimed that increasing 
D decreases the energy scale. As before the error lies in only considering one value 
for 6. 

The inclusion of the first excited state leads to a dependence on D which is more 
complicated than logarithmic and simple scaling theory does not help us. To obtain 
some idea as to whether this dependence is important we re-do our calculations with 
D = l O O f .  The curves we get are very similar, suggesting that the cancellation is going 
through as before. This indicates that the value of the band width has little effect of 
the properties of the system. 

In the two scaling limits, I) S 161 S=- f ,  we can rescale our equations leading to the 
following equations for d and x 

ci, = us + ET = T* exp( - T*/r)  ( 5 . 8 )  

(5.9) 

where 

T* = f/(nf - 1) 

x = $  cffl /d= (d*fllT*) exp(T*/f) = [P:fil(nf - l)/i.I exP[l/(nf - 111 

in the f '  limit, and 

(5.10) 

d + T* = os + E:  = 2T" exp(-T*/f') (5.11) 

where 

T" = p/R(2 - nf) 

x = 2,~&~/(c i ,  + T * )  = (pZff2/T*) exp(T*/f) 

(5.12) 

= [P.2eff2(2 - 4 / f ' I  exp[l/R(2 - nr>l (5.13) 

in the f 2  limit. So we find an essential singularity rather than just a simple pole in the 
susceptibility which is just what was found for the exact result for Ce in the f '  limit 
(Rasul and Hewson 1984). 

6. The charge susceptibility 

It is straightforward to extend our method to calculate the charge susceptibility. This 
can be done by adding an extra term ~ X ~ ~ ~ f ~ ~ ~ f ~ ~ ~  into the Hamiltonian and calculating 
the dependence of ws on E .  We then have xc = d2us/de2. This can be seen to be 
equivalent to xc = -dnf/d6. 

Working to zeroth order and using the rescaled equations we find for the results 
in the two Kondo limits 

xc = (nf - ~ ) ~ / f  (6.1) 

as nf+ 1 and 
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as n p  2. These can be compared with the zeroth-order result for Ce 

xc = n3(1 - n p ) / f .  (6.3) 
We see that the behaviour in the f’ limit is analogous to that for Ce while that in the 
f ’  limit is different. 

If we now include the first excited state we find that (6.1) remains unchanged while 
(6.2) is modified to become 

xc = R(2 - n f ) ’ / f .  

xc = (1 - np)2/F. 

(6.4) 

(6.5) 

The equivalent expression for Ce in the f 1  limit is 

We have also calculated xc in the middle of the valence regime. For 6 = -2 we 
found xc = 0.06f so xc is very small and is for all nf between 1 and 2. This is in 
contrast to the case for Ce where as we go into the mixed valence regime the spin and 
charge susceptibilities are of the same order of magnitude. It appears that in the case 
of Tm spin fluctuations are dominating the behaviour even for intermediate valence. 

There exists an exact relation between x, xc and the linear coefficient of specific 
heat, y ,  due to Yoshimori (1976) 

7 = R-l[Xc + ( R  - l)Z] (6.6) 
where y = (n2ki /3)p.  Using this formula we can calculate the Wilson ratio a/?. This 
is given by 

X / Y  = R/(R - 1 + xc/X>. (6.7) 
In the two Kondo limits the ratio xc/f is vanishingly small. In the middle of the valence 
regime the ratio is also very small -0.006 for 6 = -2. It appears that the Wilson ratio 
is to a good approximation given by its Kondo limit value of 1/(1 - R-’) throughout 
the mixed valent regime in contrast to Ce where there is a significant dependence 
on nf 

7. The frequency-dependent susceptibility 

The variational method used so far can also be extended to calculate the frequency 
dependent susceptibility, ~ ( c o ) .  This is related to the inelastic neutron scattering and 
gives important information about the low-energy excitations of the system. For the 
case of Ce this has been calculated by Gunnarsson and Schonhammer (1985) and, 
using a different technique, Kuramoto and Kojima (1984). 

The method we use is as follows. We add into our Hamiltonian (1.1) a time- 
dependent perturbation H1 = ,uZh cos cot. We can then use standard perturbation 
theory, i.e., we substitute (2.5) into 

where the coefficients as(k) ,  A - ( k )  etc. are now time-dependent. Having obtained 
expressions for these coefficients we can define a time-dependent magnetic moment 
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Figure 3. A plot of the imaginary part of the susceptibility against o for 6 = -2.5. 

Wt) = ($s(h)lH1 I $ s ( W  (7.2) 
~ ( o )  is then given by aM/d(h cos ut). 

(1985), but we note that it gives identical results for Ce. 
This method is somewhat different to that used by Gunnarsson and Schonhammer 

For the present problem it yields the following equations 

X ( W )  = i [ F (w)  + F(-o)l (7.3) 
where 

(7.5) 

(7.6) 

B - ( k ,  k ' ,  @)(Os + 6 + E k  + E k '  - 0) 
= - P ( k ,  k ' )  - V [ A - ( k ,  U) + A - ( k ' ,  w ) ]  

where a and b depend on the coupling scheme used. The susceptibility clearly diverges 
for certain values of o. The integral equation becomes more difficult to solve in view 
of this and for simplicity we have chosen to use zero j-j coupling as N +  for which 
b = 0. 

We wish to look at both the real and imaginary parts of ~ ( o ) .  Letting OJ- w + iv 
where v + 0 we can find the imaginary part which is shown in figure 3. The real part 
can also be calculated (see figure 4). We can see by inspection that A - ( k ,  o) has poles 
at o = &k + os - oD and o = &k + os + 6. There is no pole for w < os - oD so the 
imaginary part of x is zero below os - oD. The real part of the susceptibility diverges 
at w = os + oD and at o =  os + 6. 

This can be compared with the equivalent results for Ce where the real part of the 
susceptibility diverges only once at o = os and the imaginary part is given by 
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40 r 

Figure 4. A plot of the real part of the susceptibility against w for 6 = - 2 . 5 .  

I m f ( u )  = [ne@ - w , ) w , ] / w ~ .  (7.7) 
If we now include all excited states then the poles in A-(k ,  o) occur at 

&k + W S  - W - F ( & k  + Os - W )  = O 3 W = & k  + W S  - W D  (7.8) 
and 

&k + W s  f 6 - W - G(&k + COS - U )  = 0. (7.9) 
The first pole corresponds to excitations across the gap between the singlet ground 
state and the higher-energy magnetic states. To understand (7.9) it is useful to consider 
the following wavefunction 

l y+ )  = a+fYm. / y o )  + 2 /?+(q)fr,c& I i j~, , )  + excited states (7.10) 
qmm' 

which has an eigenvalue equation 

o+ + 6 = G(w;) (7.11) 

and we see that (7.9) can be rewritten w = &k + us - w+.  
The situation is as follows. For Ce we can define two wavefunctions, one consisting 

of the f o  state plus all terms connected to this via H,,, (this is the singlet) and the 
second consisting of the f 1  state plus all terms connected by H,,, (the doublet state). 
The dynamic susceptibility has a threshold at the energy difference of these two states. 
For Tm we can define two states by considering the f1 state plus all terms connected 
by H,,, and thef2  state plus all terms connected by H,,, (equations (1.3) and (7.10), 
respectively). Both these states are magnetic but we can also define a singlet state 
which lies below both of them. The two threshold energies we see in the dynamical 
susceptibility correspond to excitations from the singlet to these two magnetic states. 
The presence of the second peak is then a direct consequence of the fact that both 
valence states have a non-zero magnetic moment. 

The Korringa relation causes there to be an exact relationship between ~ ( 0 )  and 
lim,,o Im X ( O ) / W  (Shiba 1975). 

Im ~ ( w ) / w  = ~ f ( 0 ) ~ .  (7.12) 

The right-hand side is O ( l / N )  so we would expect to get zero when we work to zeroth 
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order. Gunnarsson and Schonhammer (1985) have shown that including excited states 
closes the gap and (7.12) can be shown to hold in the N +  limit. The extra terms 
are of order 1/N so an approximate threshold still remains. This can be seen in the 
following way. In calculating the susceptibility we will always obtain a term of 
the form xkLYs(k)A(k, U), where A(k ,  w) = &/[Os + &k - - G(ws + &k - U)]. This 
clearly has a pole at w = &k + os - wD, where wD is given by the solution of wD = 
G(wD). G(ws + &k - w) is defined by the integral equation (3.13) and os is found 
from os = F(ws). We see that the integrand has a pole at w = E k  so has a pole even 
as w+ 0. It is this fact that gives rise to the Fermi liquid relation. 

The situation is different for Tm. The functions F(wJ and G(ws) which again 
occur in the equations for ~ ( o )  do not contain poles and the imaginary part of the 
susceptibility is zero below ws - wD or cos - w ; ,  whichever is smaller. Including 
excited states will smooth the curve for ImX(w) at the first threshold but will not 
remove the gap. It is hard to imagine that this is an intrinsic property of the model 
and we suspect that it arises due to the approximations we have made. Kuramoto and 
Kojima (1984) have already suggested that while giving accurate values for the binding 
energies the ‘non-crossing’ approximation does not describe the low-energy excitations 
very well. 

Experimentally, the neutron spectrum for Ce is qualitatively different from that 
for Tm. The former has a quasi-elastic peak with a weakly temperature-dependent 
width. For Tm, however, the neutron scattering consists of two peaks, one quasi- 
elastic and one inelastic. The latter, of appreciable intensity, is broad and cannot be 
explained as arising from crystal field splitting. The width of the quasi-elastic peak 
tends to zero as T approaches 3 K. These features are seen both in the concentrated 
system TmSe and in the dilute systems Tm, osY, &e and Tm, osLao &3e, indicating 
that they are due to a local property of the ion (Holland-Moritz and Prager 1983, 
Holland-Moritz 1983). The experimental neutron scattering curve can be compared 
with our theoretical curve for ImX(o)/w (ImX(w) is shown in figure 3). We note in 
particular the fact that a second peak is found. The parameters used for the diagram 
give nf = 1.5 which is about right for Tm, osYo &e. The position of the first peak is at 
0.08 p and the halfwidth of the line is -0.02r. Our value for the second threshold, A ,  
is os - w+ = 0.85r and the line has a haifwidth of 0 . l f .  Better estimates for the 
thresholds can be obtained by including terms to O(l/R), with R = 13/8. This gives 
os - wD = 0.09f and A = 0.6f .  The frequency-dependent susceptibility is more dif- 
ficult to calculate but we do not expect the linewidths to change greatly. To make a 
quantitative comparison with our theory we need an estimate for p. Read et a1 (1985) 
take f = 40 meV, having assumed that r has the same value as for Ce. Here we use 
the experimental value for A to give an estimate for f and use this to determine the 
other quantities. For Tmo osYo &e A = 11 meV. This gives f = 18 meV. The half- 
width of the second peak is -3.6 meV, which is in agreement with the experimental 
value 3 meV. The first peak is at 1.6 meV with half-width 0.4 meV. The agreement 
between this and the experimental data which shows a quasi-elastic width of 0.2 meV 
is not good. We note that the Kondo temperature, T K ,  defined as being equal to the 
energy gap ws - wD is -19 K. The condition for Fermi-liquid-like behaviour, i.e., 
T TK, is not therefore being met by experiments carried out at 15 K. What appears 
to be happening is that the doublet state is appreciably occupied and as this state is 
degenerate the low-energy behaviour is dominated by zero-energy excitations. 

Data are also presented on Tmo osLao &e which have n ,  =- 1.6. The position of the 
inelastic peak for this compound is -3 meV, i.e., the excitatioil energy is much reduced 
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compared to the previous case. Theoretically we find A = 0.4f ,  giving r = 7.5 meV, 
which is significantly smaller than that found before. ws - wD is reduced to 0.08f = 
0.6meV which is of the same order of magnitude as the experimental width of 
0.75 meV. However, it is not clear that a direct comparison is meaningful. 

We note that a previous attempt has been made to explain the inelastic peak using 
a variational method (Mazzaferro et a1 1981). However, they considered a magnetic 
variational wavefunction (equivalent to 1 qD)) rather than the singlet ground state, so 
their results are not really valud. 

S M M Evans  and  G A Gehring 

8. Extension of results to uranium compounds 

The properties of uranium ions are of particular interest in view of the wide variety 
of behaviours exhibited by different compounds at low temperatures. While certain 
compounds appear to have localised 5f electrons, others show itinerant ‘heavy fermion’ 
behaviour. Much attention has been given to uranium compounds showing heavy 
fermion superconductivity since these have unusual properties that are not thought to 
be consistent with simple BCS theory. It seems clear that the explanation for the 
different possible ground states must lie in the details of the particular lattice and the 
interactions between ions. In concentrated salts the hopping of electrons between 
ions (double exchange) and the RKKY interaction provide two mechanisms for the 
occurrence of ordered magnetism (Varma 1979). One kind of classification has been 
provided in the form of Hill plots (Hill 1970) where it is seen that compounds with 
local magnetic moments usually have small U-U internuclear distances compared to 
those exhibiting itinerant behaviour. 

It is interesting then to ask what properties a single uranium ion will possess. 
Physically it would seem reasonable that the properties would resemble those of a Tm 
ion in that again we have an ion fluctuating between two magnetic valence states, the 
states being in this case f 2  and f 3 .  This is also the conclusion reached by the theories 
we have discussed. The results of a mean-field functional integral calculation are 
trivially extended to all cases of ions fluctuating between f” and f”+l (n  # 0 )  leading 
to the same conclusions as for Tm, i.e., that we have a singlet ground state with small 
energy scale. Extending the variational method that we have considered here is 
considerably harder because the singlet state involves an increasing number of holes. 
To zeroth order, variational wavefunctions have been found and the corresponding 
eigenvalues calculated by solving a two-dimensional integral equation (Numes et a1 
1985). Again there is a close correspondence with the results for Tm. It is entirely 
possible to extend all our results to the case of uranium, although in view of the added 
complexity of the wavefunctions we have in fact only considered the analytical results 
for the two Kondo limits. It is readily seen that the results are entirely equivalent. 
With no self-energy terms the energy scale shows the asymmetry found earlier with 
the energy scale being anomalously large in the f 3  limit as compared to the f 2  limit. 
Including the first self-energy term corrects this leading to the following results (after 
renormalisation) 

w s  - wT = 2T* exp( T*/F) 

x = 2C12,ff2/(~S - U T )  = (dff2/T*) exp(T*/f) 

(8.1) 

(8 .2)  

where T* = f / ( n f  - 2), in t he f2  limit and 
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W S  - COT = 3T* exp(T*/r) (8.3) 

x = 3p:ff3/(uS - = (p:ff3/T*) exp(T*/f) (8.4) 
with T* = l=/[R(3 - nf)] in the f 3  limit. The extra factors of 2 and 3 in (8.1) and (8.3) 
come from the fact that the binding energy is proportional to the number of electrons. 
wT is the binding energy of the no-hole triplet and has an eigenvalue equation identical 
to that for the doublet in the case of Tm. Although we have not solved the integral 
equations throughout the mixed valence region it is difficult to imagine that our 
conclusions would differ. 

9. Conclusions 

In this paper we have considered an extension of the method used in I to include a 
calculation of the magnetic susceptibility and of the energy scale to 0(1/R) throughout 
the mixed valence regime. Our results are best illustrated by figures 1 and 2, where it 
is seen that (i) x is closely correlated to the energy scale; (ii) to zeroth order there is 
a marked asymmetry in the energy scale in the two local moment regimes; and (3) the 
inclusion of the first electron-hole excitation removes the asymmetry and significantly 
reduces the energy scale. Analytical results in the two Kondo limits are equivalent to 
the exact results for Ce. We have also considered the dependence of our equations 
on the band cut-off D and shown that this is very weak. The charge susceptibility has 
been shown to be small even in the middle of the valence regimes and the spin 
fluctuations dominate the behaviour for all n? 

Calculating the dynamical susceptibility ~ ( u )  shows that this has extra structure 
compared with that for Ce found experimentally. At low energies our expression does 
not satisfy the Shiba-Fermi liquid relation due to the approximations used. Our results 
easily extend in the Kondo limits to give equivalent results for uranium ions. We note 
that the susceptibility is proportional to (gf - gJ2, in contrast with the result from the 
functional integral method where the contribution to the susceptibility from the c 
electrons is O(m/m*) compared to that from the f electrons. 

Although the energy scale we find is small it does not appear to be small enough 
to account for the results from neutron scattering. This fact was commented on by 
Read et a1 (1986). Including excited states reduces the energy slightly below that found 
by Read et a1 (1986) and treating as a parameter determined by the position of the 
second peak in the frequency dependent susceptibility reduces the energy scale further. 
However the agreement with experiment is still not good. Crystal field splittings have 
been ignored and it may be that these are playing an important role. A similar problem 
arises in the case of uranium compounds. The calculated energy scale is about a factor 
10 too big to account for the observed magnetic ordering in UN at 50 K. Estimates of 
the mass enhancements in the heavy fermion systems also tend to be too low. The 
inclusion of the self-energy terms improves the agreement, but not by nearly enough. 
The situation remains that comparison between theory and experiment is not very 
satisfactory though we note that our theory is for zero temperature and it is not clear 
that a direct comparison is meaningful. 
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